View Single Post
356-930 356-930 is offline
Acceleration Junkie
 
Join Date: Aug 2007
Location: Laguna Beach, CA
Posts: 263
Garage
Quote:
Originally Posted by Craig 930 RS View Post
That 930 manifold sucks so badly for air distribution......man, I dunno.
Just one of the reasons not to tune for max power by use of water/meth injection. This said, no matter how bad the air/fuel distribution of the 930 manifold may be, whatever water/meth is injected will be equally poorly distributed with whatever air/fuel is being distributed.
It can't hurt anything if you don't add timing. It's added insurance via its cooling capacity.

Here's a bit of technical info that informs why adding water/meth to the air/gasoline equation will help:
By Klaus Allmendinger, VP of Engineering, Innovate Motorsports
Many people with turbochargers believe that they need to run at very rich mixtures. The theory is that the excess fuel cools the intake charge and therefore reduces the probability of knock. It does work in reducing knock, but not because of charge cooling. The following little article shows why.
First letís look at the science. Specific heat is the amount of energy required to raise 1 kg of material by one degree K (Kelvin, same as Celsius but with 0 point at absolute zero). Different materials have different specific heats. The energy is measured in kJ or kilojoules:
Air ~ 1 kJ/( kg * deg K)
Gasoline 2.02 kJ/( kg * deg K)
Water 4.18 kJ/( kg * deg K)
Ethanol 2.43 kJ/( kg * deg K)
Methanol 2.51 kJ/( kg * deg K)
Fuel and other liquids also have what's called latent heat. This is the heat energy required to vaporize 1 kg of the liquid. The fuel in an internal combustion engine has to be vaporized and mixed thoroughly with the incoming air to produce power. Liquid gasoline does not burn. The energy to vaporize the fuel comes partially from the incoming air, cooling it. The latent heat energy required is actually much larger than the specific heat. That the energy comes from the incoming air can be easily seen on older carbureted cars, where frost can actually form on the intake manifold from the cooling of the charge.
The latent heat values of different liquids are shown here:
Gasoline 350 kJ/kg
Water 2256 kJ/kg
Ethanol 904 kJ/kg
Methanol 1109 kJ/kg
Most engines produce maximum power (with optimized ignition timing) at an air-fuel-ratio between 12 and 13. Let's assume the optimum is in the middle at 12.5. This means that for every kg of air, 0.08 kg of fuel is mixed in and vaporized. The vaporization of the fuel extracts 28 kJ of energy from the air charge. If the mixture has an air-fuel-ratio of 11 instead, the vaporization extracts 31.8 kJ instead. A difference of 3.8 kJ. Because air has a specific heat of about 1 kJ/kg*deg K, the air charge is only 3.8 C (or K) degrees cooler for the rich mixture compared to the optimum power mixture. This small difference has very little effect on knock or power output.
If instead of the richer mixture about 10% (by mass) of water would be injected in the intake charge (0.008 kg Water/kg air), the high latent heat of the water would cool the charge by 18 degrees, about 4 times the cooling effect of the richer mixture. The added fuel for the rich mixture can't burn because there is just not enough oxygen available. So it does not matter if fuel or water is added.
__________________
Chris Toy
356-930 Gone
Old 02-03-2009, 09:43 AM
  Pelican Parts Catalog | Tech Articles | Promos & Specials    Reply With Quote #10 (permalink)