View Single Post
sammyg2 sammyg2 is offline
Unregistered
 
sammyg2's Avatar
 
Join Date: Aug 2000
Location: a wretched hive of scum and villainy
Posts: 55,652
cont:

Quote:
Technical Objectives for the 2013 Slingatron Kickstarter

Our technical objectives for this Slingatron Kickstarter development project are to meet or exceed the following performance goals.

1) Slingatron proposed to design, construct, and test a Slingatron with a diameter of about 5 meters and capable of accelerating one pound payloads to 1 km/sec. They will need to achieve 40-60 cycles per second gyration frequency to accomplish this. They will only work with ¼ lb payloads during the basic Kickstarter project and for the demo event, but we will design and build the Slingatron so that later we can safely test launch one pound payloads. During these laboratory and demo tests, the payload will be captured in a tank.

2) They will design the 5-meter Slingatron as the core module of an expandable system to which additional modules can be added later to extend the performance to 2 km/sec or higher. This allows the investment in hardware provided by this Kickstarter project to leverage the construction of higher performance machines without having to start from scratch.

A 2013, 5 meter diameter Kickstarter Slingatron proposed to demonstrate launch of up to 1 lb test payloads at 1 km/sec. This is a fully modular approach, which can be further expanded to much larger systems.

The 5-meter diameter Kickstarter Slingatron will demonstrate launch of up to 1 lb test payloads at 1 km/sec. This is a fully modular approach, which can be further expanded to much larger systems.

Around 2006 the Army and Air force had magnetic catapult space launch funding

In 2006, the US army had some small funding for a Slingatron.

Initial studies have demonstrated the fundamental feasibility of the Slingatron concept. This program will explore the concept’s bounding limits and seek to develop uses for the technology within those limits. Included in this program will be studies of the key technologies that will allow the accelerator to achieve very high projectile energies.
The idea is a giant spiral Hula Hoop, somewhat bigger than a football stadium and oscillating at about nine revolutions a second.

Nextbigfuture noticed that the longer path in the Army design would allow for less extreme acceleration. (ie fewer G’s)

The program plans are nothing if not ambitious, aiming to:
– Fabricate experimental launchers.
– Demonstrate mass launchers that range in capabilities over three to four orders of magnitude.
– Demonstrate mass velocities on the order of several km/s and perhaps higher than 10km/s.

The Air force and Launchpoint are working on magnetic sled launch systems.

Before 2006, there was a $500,000 Phase II contract awarded from the U.S. Department of Defense Small Business Technology Transfer Program, LaunchPoint engineers, under the direction of Jim Fiske, evaluated an innovative magnetically-levitated space launch system.

The Launch Ring, as it is called, would accelerate a small payload within a subsurface magnetic tube until it reached escape velocity. At that point, the payload capsule would exit the ring onto an elevated ramp and be launched into orbit. The results of LaunchPoint’s R&D analyses suggest that a space launch system utilizing maglev technology could work very well, creating a more cost-effective means of launching small payloads into space.
Old 10-10-2019, 04:43 PM
  Pelican Parts Catalog | Tech Articles | Promos & Specials    Reply With Quote #313 (permalink)