|
Around a black hole there is not an electronic cloud and there is no degenerescence pressure to counterbalance the pressure of all the Earth matter.To indicate the pressure we must use the surface If in an equation Pressure P = Force F / Surface S if we keep F= Constant and we reduce surface, we are obliged to notice that Pressure P will increase. Here F is the weight of all the matter of Earth and this do not change. As the surface of the MBH will be very small, calculus indicate on this surface an impressive increase of pressure in the range of : P = aprox 7 x 10 ^ 23 Pa .
The high pressure in this region push strongly all the matter in direction of the central point where the MBH is.
Electrons directly in contact with the Micro Black Hole will first be caught, then the nucleus will be caught.
It is sure that the atoms will be caught one after the other but the more the pressure will be important the more the caught will be quick. When a neutron star begins to collapse in a black hole (implosion), at the beginning the black hole is only a micro black hole as we see in [Ref. 7 Page 443]. At this very moment the high gravitational pressure in the center of the neutron star is there breaking the “strong force” which lays between the quarks located into the neutrons.
The MBH will grow there only because of the high pressure.
In center of Earth pressure is normally far to small for such a process, but if we create a slow speed MBH that does not evaporate and if this MBH comes at rest in the center of Earth, the pressure in the center of Earth could be sufficient for the growing of the MBH. We must remember that in the surrounding of the MBH the “strong force” is broken and this could mean that the same kind of pressure process than in neutron star could work there ( in a slow mode compared with a neutron star of course ). In the center of Earth, the high pressure, the high temperature, the increasing mass associated with electrical and gauge forces process could mean important increase of capture and a possible beginning of an exponential dangerous accretion process. Our calculus indicates as a first approximation with a MBH of 0.02 g at rest at the center of earth that the value for accretion of matter could be in the range of 1 g/sec to 5 g/sec.
7. Conclusion about MBHs : We estimate that for LHC the risk in the range of 7% to 10%.
II. Other Risk Factors
The CERN study indicates that strangelets and monopoles could be produced and present no danger for earth. [Ref. 1]
We will present arguments of possible danger.
1. Strangelets
Strangelets are only dangerous for earth if they are not moving rapidly through matter. If only one strangelet is at zero speed there would be danger. We have seen for MBHs that the cosmic ray model is very different from the LHC where particles with opposing speeds collide. We have seen that, given the impact of opposite speed particles, the distribution of speeds of resultant particles indicates the probability of very low speeds (0 m/sec < speed < 4 m/sec) and this could mean dangerous strangelets. We estimate a minimal risk for strangelets on the order of 2%. We might estimate as high as 10 % if we want to be wise because the danger is primary!
2. Monopoles
Monopoles could be produced in the LHC. [Ref. 1] .CERN’s calculations indicate that one monopole produced in LHC could destroy 1.018 (US notation 1,018) nucleons but it will quickly traverse the earth and escape into space. However, we know that photons produced in the center of the sun need thousands of years to traverse the sun and escape into space because of the numerous interactions. If the speed given to the monopole after interaction is a speed in a random direction, we can imagine that the monopoles produced in the LHC could stay a very long time in earth and be dangerous. 3. Estimate of danger due to our ignorance of ultimate physical laws: We have not exhausted processes that might cause danger. There are other particles, black energy, black mass, quintessence, vacuum energy, and many non definitive theories. We estimate this danger ranging from a minimal 2% risk to 5%.
III. CONCLUSION
The CERN study [Ref. 1] is a remake of a similar study for the earlier Relativistic Heavy Ion Collider at Brookhaven (RHIC) [Ref. 6] adapted to the LHC.
It is important to notice that: The study for the RHIC had concluded that no black holes will be created. For the LHC the conclusion is very different: “Black holes could be created!” !
The main danger could be now just behind our door with the possible death in blood of 6.500.000.000 (US notation 6,500,000,000) people and complete destruction of our beautiful planet. Such a danger shows the need of a far larger study before any experiment ! The CERN study presents risk as a choice between a 100% risk or a 0% risk. This is not a good evaluation of a risk percentage!
If we add all the risks for the LHC we could estimate an overall risk between 11% and 25%!.
We are far from the Adrian Kent’s admonition that global risks that should not exceed 0.000001% a year to have a chance to be acceptable. [Ref. 3] .Even testing the LHC could be dangerous. Even an increase in the luminosity of the RHIC could be dangerous! It would be wise to consider that the more powerful the accelerator will be, the more unpredicted and dangerous the events that may occur! We cannot build accelerators always more powerful with interactions different from natural interactions, without risk. This is not a scientific problem. This is a wisdom problem!
Our desire of knowledge is important but our desire of wisdom is more important and must take precedence. The precautionary principle indicates not to experiment. The politicians must understand this evidence and stop these experiments before it is too late!
__________________
Michael D. Holloway
https://simple.m.wikipedia.org/wiki/Michael_D._Holloway
https://5thorderindustry.com/
https://www.amazon.com/s?k=michael+d+holloway&crid=3AWD8RUVY3E2F&sprefix= michael+d+holloway%2Caps%2C136&ref=nb_sb_noss_1
|