![]() |
|
|
|
Registered
|
Casimir Effect
Interesting stuff about our world
http://www.economist.com/science/displaystory.cfm?story_id=11402849 The Casimir effect, a curious consequence of quantum theory, may yet have practical applications CAN something come of nothing? Philosophers debated that question for millennia before physics came up with the answer—and that answer is yes. For quantum theory has shown that a vacuum (ie, nothing) only appears to be empty space. Actually, it is full of virtual particles of matter and their anti-matter equivalents, which, in obedience to Werner Heisenberg's uncertainty principle, flit in and out of existence so fast that they cannot usually be seen. However, in 1948, a Dutch physicist called Hendrik Casimir realised that in certain circumstances these particles would create an effect detectable in the macroscopic world that people inhabit. He imagined two metal plates so close together that the distance between them was comparable with the wavelengths of the virtual particles. (Another consequence of quantum theory is that all particles are simultaneously waves.) In these circumstances, he realised, the plates would be pushed together. That is because only particles with a wavelength smaller than the gap between the plates could appear in that gap, whereas particles of any wavelength could appear on the other sides of the plates. There would thus be more particles pushing in than pushing out, and the plates would clash together like a pair of tiny cymbals. A neat idea. And in 1996, it was shown experimentally to be true. But so what? The answer is that now things in the computing industry have become so small that the Casimir force is starting to affect them. Computer engineers talk of “stiction”—the phenomenon of microscopic components sticking together—and spend a lot of time trying to figure out ways to avoid it. The Casimir effect is not the only cause of stiction, but it is an important one. Engineers are now beginning to understand how Casimir forces depend on a device's design—an essential starting point if Casimir-related stiction is to be eliminated. A forthcoming paper in Physical Review Letters by Ho Bun Chan of the University of Florida, Gainesville, shows how the force changes when one of the flat metal plates imagined by Casimir is replaced with a corrugated silicon one. Dr Chan found that the effect's size depends on the spacing of the trenches. This suggests that if you designed microelectronic components carefully, you could reduce stiction. Stiction is not, however, always a problem, and work is also going on to turn the Casimir effect from a liability to an asset, by using it in what are known as microelectromechanical systems (MEMS). In 2001 Dr Chan and his collaborator Federico Capasso, who were then working at Bell Labs, published a paper showing one way to exploit the effect in MEMS. They made a tiny, gold-plated seesaw and slowly lowered a gold-plated ball towards it. At a distance of about 300 nanometres (a nanometre is a billionth of a metre), the seesaw began to tilt towards the ball. The effect was particularly strong at distances less than 150 nanometres. What Dr Chan and Dr Capasso had shown was that the Casimir force could be used to make a simple lever that might act as a tiny but accurate stress sensor in nanoscale machines. What really excites researchers, though, is the idea that the Casimir effect may sometimes be repulsive. That would knock the problem of stiction firmly on the head and, according to Dr Capasso, would open up the possibility of making things like frictionless ball-bearings. According to calculations made several decades ago by Evgeny Lif****z, a Russian physicist, Casimir repulsion should be possible—but you have to replace the vacuum with a fluid. The maths suggest that in order for this to happen, both liquid and plates must be made of carefully chosen substances. This is because the repulsion is caused by electromagnetic charges induced in the plates and the liquid by the virtual particles, and the forces produced by these charges depend on the materials you use. As with Casimir's original suggestion, the gap between the theory and its practical demonstration has been a long one. But Dr Capasso, who is now at Harvard, and his student Jeremy Munday, have started investigating Lif****z's ideas. They recently performed an experiment in which they looked at what happens when the plates are made of gold and the fluid is ethanol. Although they did not succeed in reversing the attractive Casimir effect completely, they did reduce it by 80%—a reduction in line with Lif****z's predictions. The right combination of materials, if it can be found, should therefore produce the desired reversal. That would be very good news for MEMS indeed.
__________________
1989 3.2 Carrera coupe; 1988 Westy Vanagon, Zetec; 1986 E28 M30; 1994 W124; 2004 S211 What? Uh . . . “he” and “him”? |
||
![]() |
|
Registered
Join Date: Jan 2001
Posts: 2,790
|
Awesome. Although as with memory metals and superconductors I suspect real world applications will be a ways off.
__________________
1967 R50/2 |
||
![]() |
|
Registered
|
Quote:
As for superconductors, they are working on some stuff here called high temperature superconductors that are not copper based (unusual) and retain their superconducting capabilities at what are almost considered "warm" temperatures. Alot of nanoscale stuff going on these days.
__________________
Mike 1976 Euro 911 3.2 w/10.3 compression & SSIs 22/29 torsions, 22/22 adjustable sways, Carrera brakes |
||
![]() |
|
Did you get the memo?
Join Date: Mar 2003
Location: Wichita, KS
Posts: 32,368
|
Glad I'm not the only one. I studied it in one of my physics classes, interesting but incredibly abstract stuff.
__________________
‘07 Mazda RX8-8 Past: 911T, 911SC, Carrera, 951s, 955, 996s, 987s, 986s, 997s, BMW 5x, C36, C63, XJR, S8, Maserati Coupe, GT500, etc |
||
![]() |
|
Moderator
|
Quote:
It also explains why black holes evaporate, Nothing can escape the gravitational influence of a black hole, but at its even horzon the constant production of virtual particle pairs creates a situation where one is sucked in and the other expellled as radiation, in flat empty space the 2 virtual particles would o recombine and disapeare back into the vacuum energy. The smaller the black hole the more these particles radiate and the quicker the hole disappears.
__________________
Bill Verburg '76 Carrera 3.6RS(nee C3/hotrod), '95 993RS/CS(clone) | Pelican Home |Rennlist Wheels |Rennlist Brakes | |
||
![]() |
|
Registered
|
I wasn't questioning the existence of the virtual particles (or the whole "stiction" effect istelf) - merely suggesting that possibly an alternative effect could be responsible for the "attraction" between the two objects since that attraction (gravitational) has been observed for even small objects at close distances.
__________________
Mike 1976 Euro 911 3.2 w/10.3 compression & SSIs 22/29 torsions, 22/22 adjustable sways, Carrera brakes |
||
![]() |
|
Registered
Join Date: Jun 2005
Location: Hamburg & Vancouver
Posts: 7,693
|
My ex-wife and I went from Casimir stiction to Casimir repulsion in only six months.
__________________
_____________________ These are my principles. If you don't like them, I have others.—Groucho Marx |
||
![]() |
|
Registered
Join Date: Apr 2008
Location: Houston TX
Posts: 8,704
|
Quote:
__________________
Mike Bradshaw 1980 911SC sunroof coupe, silver/black Putting the sick back into sycophant! |
||
![]() |
|